1. Use first and second differences to determine if the relation is quadratic.

\boldsymbol{x}	\boldsymbol{y}	First Differences	Sifferences
-3	20		
-2	13		
-1	8		
0	5		
1	4		
2	5		
3	8		

2. Identify the information indicated.

Coordinates of vertex: (__ ___)
Equation of axis of symmetry: \qquad
x-intercepts: \qquad
y-intercept: \qquad
min/max: \qquad

Determine if the relation is linear, quadratic, or neither. Provide an explanation for your answer.

x	y	First Differences	Second Differences
-3	12		
-2	7		
-1	4		
0	3		
1	4		
2	7		
3	12		

The relation is \qquad because \qquad

